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Abstract
The one-dimensional Holstein model of spinless fermions interacting with
dispersionless phonons is solved by using a Bethe ansatz in analogue to that
for the one-dimensional spinless Fermi–Hubbard model. Excitation energies
and the corresponding wavefunctions of the model are determined by a set
of partial differential equations. It is shown that the model is, at least, quasi-
exactly solvable for the two-site case, when the phonon frequency, the electron–
phonon coupling strength and the hopping integral satisfy certain relations. As
examples, some quasi-exact solutions of the model for the two-site case are
derived.

PACS numbers: 03.65.Fd, 71.10.Fd, 71.30.+h

The problem of interacting electrons with phonons has been attracting much attention as it
is helpful in understanding superconductivity in many aspects, such as in fullerenes, bismuth
oxides and the high-Tc superconductors [1]. Unlike conventional metals, these materials are
neither necessary in the weak-coupling regime where perturbation theory can be used or the
strong-coupling case in which a polaronic treatment is possible, nor necessary in the adiabatic
regime in which characteristic phonon energies are much less than characteristic electron
energies. This challenge has led to numerical studies of the Holstein model of electrons
interacting with phonons in infinite dimensions, two dimensions, one dimension and on just
two sites [1, 2]. The one-dimensional case is of importance since a wide range of quasi-
one-dimensional materials undergo a Peierls or charge-density-wave (CDW) instability due
to the electron–phonon interaction. Most theoretical treatments assume the adiabatic limit
and treat the phonons in a mean-field approximation. However, it has been argued that in
many CDW materials the quantum lattice fluctuations are important [3]. Up until now, various
variational methods [4], renormalization group methods [5], world-line quantum Monte Carlo
[6] or Green-function Monte Carlo [2] methods have been used. Other numerical methods
including numerical diagonalization [7] and DMRG [8, 9] techniques have also been adopted.

0305-4470/06/130207+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK L207

http://dx.doi.org/10.1088/0305-4470/39/13/L02
http://stacks.iop.org/JPhysA/39/L207


L208 Letter to the Editor

In this letter, we will study the one-dimensional Holstein model of spinless fermions with
a Bethe ansatz-like method. This model is particularly interesting because at a finite fermion–
phonon coupling, there is a quantum phase transition from a Luttinger liquid (metallic) phase
to an insulating phase with CDW long-range order [6, 10].

The Hamiltonian is

H = ω
∑

i

b
†
i bi − t

p−1∑
i=1

(
f

†
i fi+1 + f

†
i+1fi

) − t
(
f

†
1 fp + f †

pf1
)
(1 − δp2) + g

∑
i

f
†
i fi

(
b
†
i + bi

)
,

(1)

where fi and f
†
i are fermion annihilation and creation operators on site i, respectively,

satisfying anti-commutation relations with {fi, fj } = {
f

†
i , f

†
j

} = 0,
{
fi, f

†
j

} = δij , bi

(
b
†
i

)
destroys (creates) a local phonon of frequency ω, which satisfy commutation relations with
[bi, bj ] = [

b
†
i , b

†
j

] = 0,
[
bi, b

†
j

] = δij , t is the hopping integral and g is the fermion–phonon
coupling, and a periodic chain of p sites is assumed. The phase transition occurs at a
critical coupling gc, separating metallic (0 � g � gc) and CDW insulating phases (g > gc)

[6, 10]. In the strong-coupling limit (g2 � ωt), (1) can be mapped onto the anisotropic,
antiferromagnetic Heisenberg (XXZ) model [6] which is exactly solvable. The transition
occurs at the spin isotropy point, is of the Kosterlitz–Thouless type and the Luttinger liquid
parameters can be found in the metallic phase [2].

In order to diagonalize Hamiltonian (1), let us consider the simpler one-dimensional
spinless Fermi–Hubbard model [11] with

H =
p∑

i=1

hif
†
i fi − t

p−1∑
i=1

(
f

†
i fi+1 + f

†
i+1fi

) − t
(
f

†
1 fp + f †

pf1
)
(1 − δp2), (2)

where {hi} are a set of parameters independent of the number of fermions, and the last term
keeps (2) satisfying the periodic condition. It is known that (2) is simply exactly solvable [11].
For k-particle excitation, the eigenstates are

|k; η〉 =
∑

i1<i2<···<ik

C
(η)

i1i2···ik f
†
i1
f

†
i2

· · · f †
ik
|0〉, (3)

where

C
(η)

i1i2···ik =

∣∣∣∣∣∣∣∣∣∣

g
(η1)

i1
g

(η1)

i2
· · · g

(η1)

ik

g
(η2)

i1
g

(η2)

i2
· · · g

(η2)

ik

... · · · · · · ...

g
(ηk)

i1
g

(ηk)

i2
· · · g

(ηk)

ik

∣∣∣∣∣∣∣∣∣∣
, (4)

in which
{
g

(ηµ)

i

}
should satisfy the following eigenequation for a p × p matrix T with∑
j

Tij (p)g
(ηµ)

j = Eηg
(ηµ)

i , (5)

where {Tij (p)} are elements of the matrix

T (2) =
(

h1 −t

−t h2

)
, T (p) =




h1 −t 0 · · · −t

−t h2 −t 0 · · ·
0

. . .
. . .

. . .
. . .

... . . . −t hp−1 −t

−t 0 · · · −t hp




for p � 3, (6)
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which is tridiagonal except the elements T1p = Tp1 = −t for p � 3 originating from the last
term in (2) which are needed in order to satisfy the periodic condition.

Let us introduce the differential realization for the boson operators with

b
†
i ⇒ yi, bi ⇒ ∂

∂yi

(7)

for i = 1, 2, . . . , p. Then, Hamiltonian (1) is mapped into the following form:

H = ω

p∑
i=1

yi

∂

∂yi

− t

p−1∑
i=1

(
f

†
i fi+1 +f

†
i+1fi

)− t
(
f

†
1 fp +f †

pf1
)
(1−δp2)+g

p∑
i=1

f
†
i fi

(
yi +

∂

∂yi

)
.

(8)

According to the digonalization procedure used to solve the eigenvalue problem (2), the
one-fermion excitation states can be assumed to be of the following ansatz form:

|k = 1; η〉 =
p∑

µ=1

q(η)
µ (y1, y2, . . . , yp) e− g

ω
yµf †

µ|0〉, (9)

where |0〉 is the fermion vacuum state and η is used to label different energy eigenstates.
By using expressions (8) and (9), the energy eigenequation becomes

∑
µ

(∑
i

ωyi

∂q(η)
µ

∂yi

e− g

ω
yµ + g

∂q(η)
µ

∂yµ

e− g

ω
yµ

)
f †

µ|0〉

− t

(
p−1∑
i=1

(
f

†
i fi+1 + f

†
i+1fi

)
+

(
f

†
1 fp + f †

pf1
)
(1 − δp2)

) ∑
µ

q(η)
µ e− g

ω
yµf †

µ|0〉

=
(

E(η) +
g2

ω

)∑
µ

q(η)
µ e− g

ω
yµf †

µ|0〉, (10)

which results in the following set of the extended Bethe ansatz equations:
p∑

i=1

ωyi

∂q(η)
µ

∂yi

+ g
∂q(η)

µ

∂yµ

− t

1 + δ2p

q
(η)

µ−1 e− g

ω
xµ−1 − t

1 + δ2p

q
(η)

µ+1 e
g

ω
xµ =

(
E(η) +

g2

ω

)
q(η)

µ (11)

for µ = 1, 2, . . . , p, which is a set of coupled rank-1 nonlinear partial differential equations
(PDEs), where the periodic conditions with q

(η)

0 = q
(η)
p , q

(η)

p+1 = q
(η)

1 are assumed, and

x1 = y1 − y2, . . . , xk−1 = yk−1 − yk, xk = yk − yk+1, . . . , xp−1 = yp−1 − yp, xp = yp − y1.

(12)

Equation (11) completely determines the eigenenergies and the corresponding coefficients{
q(η)

µ ≡ q(η)
µ (y1, y2, . . . , yp)

}
. Once the above PDEs are solved for one-fermion excitations,

according to the procedure used for solving the one-dimensional spinless Fermi–Hubbard
model, the k-fermion excitation wavefunction can be organized into the following form:

|nf = k; η〉 =
∑

1�i1<i2<···<ik�p

C
(η)

i1i2···ik e− g

ω

∑k
µ=1 yiµ f

†
i1
f

†
i2

· · · f †
ik
|0〉 (13)

with

C
(η)

i1i2···ik =

∣∣∣∣∣∣∣∣∣∣

q
(η1)

i1
q

(η1)

i2
· · · q

(η1)

ik

q
(η2)

i1
q

(η2)

i2
· · · q

(η2)

ik

... · · · · · · ...

q
(ηk)

i1
q

(ηk)

i2
· · · q

(ηk)

ik

∣∣∣∣∣∣∣∣∣∣
. (14)
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The corresponding k-fermion excitation energy is given by

E
(η)

k =
k∑

ν=1

E(ην), (15)

in which E(ην) is the νth eigenvalue of equation (11).
In order to get quasi-exact solutions of (11), we make use of the coordinate transformation

(12) with new variables {x1, x2, . . . , xp−1} and X = ∑p

i=1 yi , and assume that q(η)
µ can be

expressed as

q
(η)

1 (x1, x2, . . . , xp−1, X) = e
g

ω
x1(ωX + g)nf1(x1, x2, . . . , xp−1),

q
(η)

2 (x1, x2, . . . , xp−1, X) = (ωX + g)nf2(x1, x2, . . . , xp−1), (16)

q
(η)

i (x1, x2, . . . , xp−1, X) = e− g

ω

∑i−1
µ=2 xµ(ωX + g)nfi(x1, x2, . . . , xp−1)

for 3 � i � p and n = 0, 1, 2, . . . . Then, equation (11) can be simplified as

ω

p−1∑
i=1

xi

∂f1

∂xi

+ gx1f
(η)

1 + g
∂f1

∂x1
− t

1 + δp2
fp − t

1 + δp2
f2 = (E(η) − nω)f1,

ω

p−1∑
i=1

xi

∂f2

∂xi

+ g

(
∂f2

∂x2
− ∂f2

∂x1

)
− t

1 + δp2
f1 − t

1 + δp2
f3 = (E(η) + g2/ω − nω)f2,

ω

p−1∑
i=1

xi

∂fµ

∂xi

− g

µ−1∑
ρ=2

xρfµ + g

(
∂fµ

∂xµ

− ∂fµ

∂xµ−1

)
− t

1 + δp2
fµ−1 − t

1 + δp2
fµ+1

= (E(η) − nω)fµ for 3 � µ � p − 1,

ω

p−1∑
i=1

xi

∂fp

∂xi

− g

p−1∑
ρ=2

xρfp − g
∂fp

∂xp−1
− t

1 + δp2
fp−1 − t

1 + δp2
f1

=
(

E(η) +
g2

ω
− g2

ω
δp2 − nω

)
fp. (17)

It can be verified that (17) has finite-rank polynomial solutions with

fi(x1, x2, . . . , xp−1) ≡ f
(mi

1,m
i
2,···,mi

p−1)

i =
∑

ν1ν2···νp−1

C
mi

1m
i
2···mi

p−1
ν1ν2···νp−1 x

ν1
1 x

ν2
2 · · · xνp−1

p−1 , (18)

for i = 1, 2, . . . , p when the phonon frequency ω, the electron–phonon coupling strength
g and the hopping integral t satisfy certain relations, where

{
mi

1,m
i
2, . . . , m

i
p−1

}
is a set of

integers, and C
mi

1m
i
2...,m

i
p−1

ν1ν2...νp−1 is the expansion coefficient depending on the parameters ω, g and
t. In such cases, a set of highly nonlinear equations is involved, which cannot be solved
analytically in general. Therefore, as a simple example, only a few simple solutions for p = 2
case will be shown.

In the two-site case, equation (17) becomes

(ωx + g)f ′
1(x) + xgf1(x) − tf2(x) =

(
E(η) − ωn − g2

ω

)
f1(x),

(ωx − g)f ′
2(x) − tf1(x) =

(
E(η) +

g2

ω
− ωn

)
f2(x),

(19)

where x ≡ x1 and n = 0, 1, 2, . . . . We seek finite-rank polynomial solutions for f1(x) and
f2(x) in the form shown in (18), and the corresponding relations among the phonon frequency
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ω, the electron–phonon coupling strength g and the hopping integral t. Since a set of highly
nonlinear equations is involved, in the following, we only list solutions corresponding to a few
lower rank polynomials:

f1(x) = − tω

g2 + t2
, f2(x) = 1 − gω

g2 + t2
x (20a)

with

E(n,0) = ω(n + 1) − g2

ω
, (20b)

when

ω2 = 2g2 + t2, (20c)

f1(x) = 2tω
gωx + ω2 − t2 − 3g2

2g4 + 4g2t2 + t4 − t2ω2
, f2(x) = 1 + 2gω

gωx2 − (2g2 + t2)x

2g4 + 4g2t2 + t4 − t2ω2

(21a)

with

E(n,1) = ω(n + 2) − g2

ω
(21b)

when

ω2 = 2g2 +
5t2

8
± 1

8

√
128g4 + 64g2t2 + 9t4; (21c)

f1(x)= −6g2tω3x2 +6tgω2(4g2 + t2−ω2)x−3tω(14g4 +t4−5t2ω2 +4ω4 +2g2(4t2−11ω2))

6g6 + 20g4t2 + t6 − 5t4ω2 + 4t2ω4 + g2t2(9t2 − 23ω2)
,

f2(x) = 1 +
−6g3ω3x3 + 6g2ω2(3g2 + t2)x2 − 3gω(6g4 + 6g2t2 + t4 − t2ω2)x

6g6 + 20g4t2 + t6 − 5t4ω2 + 4t2ω4 + g2t2(9t2 − 23ω2)
(22a)

with

E(n,2) = ω(n + 3) − g2

ω
(22b)

when ω2 are roots of the equation

48g6 + t6 − 14t4ω2 + 49t2ω4 − 36ω6 + 4g4(11t2 − 54ω2) + 4g2(3t4 − 29t2ω2 + 54ω4) = 0,

(22c)

and so on, which form an infinite quasi-exactly solvable series with f
(m)
1 (x) = ∑m

i=0 aix
i and

f
(m+1)
2 (x) = ∑m+1

i=0 cix
i being rank m and rank m + 1 polynomials of x, respectively, where ai

and ci are the corresponding expansion coefficients. The corresponding energy eigenvalue is

E(n,m) = ω(n + m + 1) − g2/ω (23)

for m = 0, 1, 2 . . . and n = 0, 1, 2, . . . . However, relations in determining the expansion
coefficients ai and ci and those among ω, g and t will become more and more complicated
with increasing m. Since the phonon frequency ω, coupling strength g and hopping integral t
must be real parameters, some solutions from the restricted conditions among these parameters
must be real. Fortunately, for up to the m = 2 cases listed in (20)–(22), solutions for ω2 from
the corresponding relations are greater than zero as long as g and t are real parameters,
especially the roots ω2 of (22c). Once the functions f

(m)
1 (x) and f

(m+1)
2 (x) are determined, the
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Figure 1. One-electron excitation energy E/ω as a function of g/ω within the quasi-exactly
solvable region.

final functions q1(X, x) and q2(X, x) needed to construct the corresponding eigenstate (13)
can be written as

q
(n,m)
1 (X, x) = (ωX + g)nf

(m)
1 (x) e

g

ω
x, q

(n,m)
2 (X, x) = (ωX + g)nf

(m+1)
2 (x) (24)

according to (16). Though only some simple solutions of p = 2 case are exemplified, more
complicated quasi-exact solutions for any number of site p can be derived similarly based
on (18).

Furthermore, though these quasi-exact solutions are valid only when the phonon frequency
ω, the electron–phonon coupling strength g and the hopping integral t satisfy certain relations,
the results should be useful in studying the model within the restricted parameter regions and
in checking approximation methods. As an example analysis, let us consider the ground state
corresponding to one-electron excitation with E(0,0)/ω = 1 − (g/ω)2 in the series. In this
case, the hopping integral t and the coupling strength g should satisfy the relation given by
(20c) and 0 � g/ω � 1/

√
2. With increasing g/ω within this region, t/ω must decrease from

1 to 0 to keep the quasi-exact solvability according to (20c). One can obtain exact quantities
within such a parameter region. One-electron excited ground-state energy of the two-site
model and the phonon number expectation value defined by

〈nf = 1; (0, 0)|
2∑

i=1

b
†
i bi |nf = 1; (0, 0)〉 (25)

as a function of g/ω within [0, 1/
√

2] are shown in figures 1 and 2, respectively. It can be
seen that the excitation energy decreases from the hopping energy E(0,0) = t = ω in the
electron–phonon decoupled case g = 0 to E(0,0) = ω/2 with t = 0 and the electron confined
on the second site. While the phonon number expectation value increases from 0 to 7/6, g/ω

increases from 0 to 1/
√

2.
As is known, quasi-exact solvability implies a situation where an infinite-dimensional

matrix version of an eigenvalue problem can be reduced explicitly into a block diagonal form
with one of the blocks being finite [12]. Though we still do not know the exact dynamical
symmetry in the quasi-exact cases of the 1-dim Holstein model, it can be inferred from
the Hilbert subspace spanned by all Fock states of the model that there may be a kind of
symmetry, of which the corresponding dynamical symmetry group may be a subgroup of
GL(m/p), where m corresponds to the highest rank of the polynomials fi(x1, x2, . . . , xp)

shown in (18). To reveal exact dynamical symmetry in the quasi-exact solvable cases of the
model is a challenge, which should be helpful in solving the model more efficiently.
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Figure 2. The phonon number expectation value of the one-electron ground state as a function of
g/ω within the quasi-exactly solvable region.

In summary, general solutions of the 1-dim Holstein model are derived based on an
algebraic approach similar to that used in solving 1-dim spinless Fermi–Hubbard model. A
set of the extended Bethe ansatz equations is coupled rank-1 nonlinear partial differential
equations (PDEs), which completely determine the eigenenergies and the corresponding
wavefunctions of the model. Though we still do not know whether the PDEs are exactly
solvable or not, at least, these PDEs are quasi-exactly solvable. In such cases, the phonon
frequency ω, the electron–phonon coupling strength g and the hopping integral t must satisfy
certain relations. As examples, some quasi-exact solutions of the model for a two-site case
are explicitly derived. Though these quasi-exact solutions are valid only when the phonon
frequency ω, the electron–phonon coupling strength g and the hopping integral t satisfy certain
relations, the results should be helpful in studying the model within the restricted parameter
regions and in checking approximation methods. There exist similar quasi-exact solutions for
any number of sites p, which will be reported in detail elsewhere in the near future.
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